\(\int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\) [519]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 106 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}} \]

[Out]

-cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/a/f-EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a
+b*sin(f*x+e)^2)^(1/2)/a/f/(1+b*sin(f*x+e)^2/a)^(1/2)

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3275, 486, 21, 437, 435} \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{a f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f} \]

[In]

Int[Cot[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(a*f)) - (Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b
/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(a*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 486

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 3275

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {1-x^2}}{x^2 \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {-a-b x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{a f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.95 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {\sqrt {2 a+b-b \cos (2 (e+f x))} \cot (e+f x)}{\sqrt {2} a f}-\frac {\sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

[In]

Integrate[Cot[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((Sqrt[2*a + b - b*Cos[2*(e + f*x)]]*Cot[e + f*x])/(Sqrt[2]*a*f)) - (Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*E
llipticE[e + f*x, -(b/a)])/(f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

Maple [A] (verified)

Time = 2.04 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.13

method result size
default \(-\frac {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, a \sin \left (f x +e \right ) E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )}{a \sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(120\)

[In]

int(cot(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2+(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*a*sin(f*x+e)*Ellip
ticE(sin(f*x+e),(-1/a*b)^(1/2)))/a/sin(f*x+e)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 723, normalized size of antiderivative = 6.82 \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {2 \, \sqrt {-b \cos \left (f x + e\right )^{2} + a + b} b^{2} \cos \left (f x + e\right ) + {\left (2 i \, \sqrt {-b} b^{2} \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (2 i \, a b + i \, b^{2}\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + {\left (-2 i \, \sqrt {-b} b^{2} \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (-2 i \, a b - i \, b^{2}\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} E(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + 2 \, {\left (2 \, {\left (-i \, a b - i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (2 i \, a^{2} + i \, a b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}}) + 2 \, {\left (2 \, {\left (i \, a b + i \, b^{2}\right )} \sqrt {-b} \sqrt {\frac {a^{2} + a b}{b^{2}}} \sin \left (f x + e\right ) + {\left (-2 i \, a^{2} - i \, a b\right )} \sqrt {-b} \sin \left (f x + e\right )\right )} \sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} F(\arcsin \left (\sqrt {\frac {2 \, b \sqrt {\frac {a^{2} + a b}{b^{2}}} + 2 \, a + b}{b}} {\left (\cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )}\right )\,|\,\frac {8 \, a^{2} + 8 \, a b + b^{2} - 4 \, {\left (2 \, a b + b^{2}\right )} \sqrt {\frac {a^{2} + a b}{b^{2}}}}{b^{2}})}{2 \, a b^{2} f \sin \left (f x + e\right )} \]

[In]

integrate(cot(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*sqrt(-b*cos(f*x + e)^2 + a + b)*b^2*cos(f*x + e) + (2*I*sqrt(-b)*b^2*sqrt((a^2 + a*b)/b^2)*sin(f*x + e
) + (2*I*a*b + I*b^2)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(s
qrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b
 + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + (-2*I*sqrt(-b)*b^2*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a*b - I*b^
2)*sqrt(-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sqrt((2*b*sqrt((a^2
+ a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 +
 a*b)/b^2))/b^2) + 2*(2*(-I*a*b - I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (2*I*a^2 + I*a*b)*sqrt(
-b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b
^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^
2))/b^2) + 2*(2*(I*a*b + I*b^2)*sqrt(-b)*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a^2 - I*a*b)*sqrt(-b)*sin(
f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*
a + b)/b)*(cos(f*x + e) - I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2)
)/(a*b^2*f*sin(f*x + e))

Sympy [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {\cot ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \]

[In]

integrate(cot(f*x+e)**2/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)**2/sqrt(a + b*sin(e + f*x)**2), x)

Maxima [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(cot(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(cot(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)

Giac [F]

\[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \]

[In]

integrate(cot(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {{\mathrm {cot}\left (e+f\,x\right )}^2}{\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \]

[In]

int(cot(e + f*x)^2/(a + b*sin(e + f*x)^2)^(1/2),x)

[Out]

int(cot(e + f*x)^2/(a + b*sin(e + f*x)^2)^(1/2), x)